Ab initio thermodynamic approach to identify mixed solid sorbents for CO2 capture technology
نویسنده
چکیده
Because the current technologies for capturing CO2 are still too energy intensive, new materials must be developed that can capture CO2 reversibly with acceptable energy costs. At a given CO2 pressure, the turnover temperature (Tt) of the reaction of an individual solid that can capture CO2 is fixed. Such Tt may be outside the operating temperature range (1To) for a practical capture technology. To adjust Tt to fit the practical1To, in this study, three scenarios of mixing schemes are explored by combining thermodynamic database mining with first principles density functional theory (DFT) and phonon lattice dynamics calculations. Our calculated results demonstrate that by mixing different types of solids, it’s possible to shift Tt to the range of practical operating temperature conditions. According to the requirements imposed by the preand postcombustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the mixed solids of interest, we were able to identify the mixing ratios of two or more solids to form new sorbent materials for which lower capture energy costs are expected at the desired pressure and temperature conditions.
منابع مشابه
Efficient Theoretical Screening of Solid Sorbents for CO2 Capture Applications
By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The ab initio thermodynamic technique has the advantage of allowing identification of thermod...
متن کاملTheoretical calculating the thermodynamic properties of solid sorbents for CO2 capture applications
Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database ...
متن کاملCO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach.
The lithium silicates have attracted scientific interest due to their potential use as high-temperature sorbents for CO2 capture. The electronic properties and thermodynamic stabilities of lithium silicates with different Li2O/SiO2 ratios (Li2O, Li8SiO6, Li4SiO4, Li6Si2O7, Li2SiO3, Li2Si2O5, Li2Si3O7, and α-SiO2) have been investigated by combining first-principles density functional theory wit...
متن کاملNitrogen enriched solid sorbents for CO2 capture
Reducing anthropogenic CO2 emissions to slow down the consequences of climate change concerns all developed countries. In the short term, one of the most viable options to cut down carbon emissions consists on CO2 capture and storage from large stationary sources such as power stations, cement plants, refineries, etc. The near-ready-to-use technology at this scale is amine scrubbing. However, i...
متن کاملBayesian calibration of thermodynamic models for the uptake of CO2 in supported amine sorbents using ab initio priors.
A statistical methodology was applied to the simultaneous calibration and validation of thermodynamic models for the uptake of CO2 in mesoporous silica-supported amines. The methodology is Bayesian, and follows the procedure introduced by Kennedy and O'Hagan. One key aspect of the application presented is the use of quantum chemical calculations to define prior probability distributions for phy...
متن کامل